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Abstract

We point out that type I string theory in the presence of internal
magnetic fields provides a concrete realization of split supersymmetry.
To lowest order, gauginos are massless while squarks and sleptons are
superheavy. We build such realistic U(3) × U(2) × U(1) models on
stacks of magnetized D9-branes. Though not unified into a simple
group, these theories preserve the successful supersymmetric relation
of gauge couplings, as they start out with equal SU(3) and SU(2)
couplings and the correct initial sin2

θW at the compactification scale
of MGUT ≃ 2× 1016 GeV, and they have the minimal low-energy par-
ticle content of split supersymmetry. We also propose a mechanism
in which the gauginos and higgsinos are further protected by a dis-
crete R-symmetry against gravitational corrections, as the gravitino
gets an invariant Dirac mass by pairing with a member of a Kaluza-
Klein tower of spin-3/2 particles. In addition to the models proposed
here, split supersymmetry offers novel strategies for realistic model-
building. So, TeV-scale string models previously dismissed because of
rapid proton decay, or incorrect sin2

θW , or because there were no un-
used dimensions into which to dilute the strength of gravity, can now
be reconsidered as candidates for realistic split theories with string
scale near MGUT, as long as the gauginos and higgsinos remain light.

∗On leave from CPHT (UMR CNRS 7644) Ecole Polytechnique, F-91128 Palaiseau



1 Introduction

Some recent developments challenge us to re-examine our preconceived no-
tions of naturalness and our expectations for physics beyond the Standard
Model at the LHC. First is the absence of any deviation from the Standard
Model suggesting that, if there is new physics at a TeV, it appears to be
fine-tuned at the per-cent level and does not comply with our notion of nat-
uralness. Second, and most important, the cosmological constant problem
(CCP) presents us with a fine-tuning much more severe than that of the
gauge hierarchy problem (GHP). This raises the possibility that the mecha-
nism which solves the CCP may also solve the GHP, and casts some doubts
on all the mechanisms proposed so far to address the GHP (technicolor, low-
energy supersymmetry (SUSY), low-scale strings, warping, little higgs), since
none of them addresses the CCP problem.

One concrete idea addressing the CCP is Weinberg’s anthropic approach [1]
which postulated the existence of an enormous “landscape” of vacua, only
a small fraction of which have a vacuum energy small enough to allow the
formation of galaxies, which provide for a natural (and possibly necessary)
habitat for observers such as ourselves. This approach has recently gained
momentum because of the realization that string theory may have such a vast
landscape of vacua [2]. Such an environment may drastically change what is
a natural or likely theory. To see how this may happen, first recall that the

standard measure of fine-tuning in SUSY theories is given by fstandard ∼ m2
H

m2
S

,

where MH ∼ 100 GeV is the Higgs mass and mS is the SUSY-breaking scale.
Consider now a neighborhood in the landscape where the density of vacua
increases with the scale of SUSY breaking proportional to m2N

S [3]. Then,
assigning equal a priori probability to each vacuum, the proper new measure
of fine-tuning, which takes into account the “entropy” associated with the

density of vacua, is fnew ∼ m2
H

m2
S

× m2N
S . For N > 1, it thus favors large

SUSY-breaking scale mS .
In such neighborhoods of the landscape low-scale SUSY is disfavored and,

if we live in such a neighborhood, the simplest possibility is that we will
discover the Standard Model (SM), rather than the supersymmetric Standard
Model, at the LHC. This would then account for why we have not seen any
evidence for low-energy supersymmetry, at the expense of giving up the two
successes of the supersymmetric SM [4]: gauge coupling unification [5] and
natural dark-matter (DM) candidate [4, 6]. A more interesting possibility
that preserves these successes is that approximate chiral symmetries protect
the fermions of the supersymmetric SM down to the TeV scale [7, 8, 9, 10].
Actually, gauge coupling unification based on extrapolation of low-energy
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data to high energies is strictly speaking only an indirect indication of light
gauginos and higgsinos, rather than of the full super-particle spectrum.

In these theories, the sparticle spectrum is “split” in two: (1) the scalars
(squarks and sleptons) that get a mass at the high-scale of supersymmetry
breaking mS, which can be as large as the grand unification (GUT) scale,
and (2) the fermions (gauginos and higgsinos) which are near the electroweak
scale and account for both gauge-coupling unification and DM. The only
light scalar in this theory is a finely-tuned Higgs. Rather than the boring
prediction that the LHC will discover just the Higgs, these theories – called
Split Supersymmetry – predict gauginos and higgsinos at a TeV, maintain
the successes of the supersymmetric SM, and account for the absence of any
evidence for physics beyond the Standard Model, so far.

The main objective of this paper is to build models of split supersymme-
try based on string theory. It is clear that split supersymmetry offers novel,
previously unavailable, strategies for realistic model-building, and some pre-
viously discarded classes of models can now be reconsidered. For example,
classes of models of intersecting branes that were studied in the context of
low-scale strings [11, 12], and dismissed because of rapid proton decay or
the value of the weak mixing angle will now be reconsidered, in section 6,
and shown to contain good candidates for realistic theories. Some TeV-scale
string models were also abandoned because of the absence of unused dimen-
sions into which to dilute the strength of gravity [13] should be reconsidered
as candidates for realistic split theories with string scale near 2 × 1016 GeV,
as long as the gauginos and higgsinos can remain light as a result of an
approximate chiral symmetry.

Another objective is to build theories where the successful unification re-
lation is preserved. In split SUSY theories this is not a luxury but an essential
ingredient, since unification is a fundamental phenomenological motivation
for the “split” spectrum of these theories. This is a strong theoretical con-
straint, since it limits us to very economical fundamental theories with few
relevant parameters in the gauge sector, small threshold corrections, mini-
mal particle content, equal SU(2) and SU(3) couplings as well as the correct
normalization of the weak mixing angle at the GUT scale (sin2 θW = 3/8).

Our paper is organized as follows. In Section 2 we discuss the theoreti-
cal framework, which is type I string theory with internally magnetized D9
branes. We show that the (tree-level) spectrum of the resulting models is
the one required by split supersymmetry. In Section 3, we discuss the con-
ditions that guarantee unification of non-abelian gauge couplings and show
that they can be naturally satisfied. In Section 4, we discuss the various mass
scales and the supersymmetry breaking in the gravity sector. In Section 5,
we propose mechanisms to keep gauginos (and higgsinos) light in the pres-

3



ence of gravity. In Section 6, we study issues of model building and present
an explicit example of the SM embedding in the above framework, with re-
alistic particle spectrum, realizing the unification conditions and predicting
the correct weak mixing angle sin2 θW = 3/8 at the GUT scale. Finally, in
Section 7, we discuss some phenomenological consequences and in particular
constraints from gluino cosmology.

2 The framework

We start with type I string theory, or equivalently type IIB with orientifold
planes and D-branes. Upon compactification in four dimensions on a Calabi-
Yau manifold, one gets N = 2 supersymmetry in the bulk and N = 1 on the
branes. Moreover, various fluxes can be turned on, to stabilize part or all of
the closed string moduli. We then turn on internal magnetic fields [14, 15],
which, in the T-dual picture, amounts to intersecting branes [16, 17]. For
generic angles, or equivalently for arbitrary magnetic fields, supersymme-
try is spontaneously broken and described by effective D-terms in the four-
dimensional (4d) theory [14]. In the weak field limit, |H|α′ < 1, the resulting
mass shifts are given by:

δM2 = (2k + 1)|qH| + 2qHΣ ; k = 0, 1, 2, . . . , (2.1)

where H is the magnetic field of an abelian gauge symmetry, corresponding
to a Cartan generator of the higher dimensional gauge group, on a non-
contractible 2-cycle of the internal manifold. Σ is the corresponding projec-
tion of the spin operator, k is the Landau level and q = qL + qR is the charge
of the state, given by the sum of the left and right charges of the endpoints
of the associated open string. We recall that the exact string mass formula
has the same form as (2.1) with qH replaced by:

qH −→ θL + θR ; θL,R = arctan(qL,RHα
′) , (2.2)

where α′ is the string Regge slope. Obviously, the field theory expression
(2.1) is reproduced in the weak field limit.

To illustrate the physics, consider an effective six-dimensional (6d) theory
compactified on a magnetized “2-cycle”. From the mass formula (2.1), it fol-
lows that all charged scalars become massive, since the internal spin Σ either
vanishes (for six-dimensional scalars), or has eigenvalues ±1 (for 6d vectors).
Actually, one of the two spin-1 helicities becomes tachyonic, reflecting the
Nielsen-Olesen instability. This tachyon can be avoided, either when several
magnetic fields are turned on in more than one internal 2-cycles [14], or in
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more realistic models with N = 1 supersymmetry in four dimensions. In the
former case, one provides a positive contribution to its mass-squared (see be-
low), while in the latter, one uses an orbifold-type projection which reduces
the supersymmetry from its maximal value of the toroidal compactification
to N = 1. On the other hand, fermions have four-dimensional (4d) chiral
zero modes, since they have internal helicities Σ = ±1/2 and only one of
the two leads to a massless mode for k = 0. Note that neutral states with
respect to the magnetized U(1) generator are not affected and form N = 1
supermultiplets. In particular, all gauge bosons of the unbroken gauge group
are accompanied by massless gauginos.

In the general case of a magnetic field pointed in several directions of
the six-dimensional internal manifold, H and HΣ are replaced by TrJH
and TrHΣ, where J is the antisymmetric “identity” matrix with elements
+1(−1) above (below) the diagonal and zero everywhere else. For instance,
when the internal manifold is a product of three factorized tori

∏3
I=1 T

2
(I),

one has H =
∑

I HI and HΣ =
∑

I HIΣI , where ΣI is the projection of the
internal helicity along the I-th plane. For a ten-dimensional (10d) spinor,
its eigenvalues are ΣI = ±1/2, while for a 10d vector ΣI = ±1 in one of
the planes I = I0 and zero in the other two (I 6= I0). Thus, charged higher
dimensional scalars become massive, fermions lead to chiral 4d zero modes if
all HI 6= 0, while the lightest scalars coming from 10d vectors have masses

M2
0 =







|qH1| + |qH2| − |qH3|
|qH1| − |qH2| + |qH3|
−|qH1| + |qH2| + |qH3|

(2.3)

Note that all of them can be made positive definite if all HI 6= 0. Moreover,
one can easily show that if a scalar mass vanishes, some supersymmetry
remains unbroken [15].

The Gauss law for the magnetic flux implies that the fields Hi are quan-
tized in terms of the area of the corresponding 2-cycles Ai:

1

Hi =
mi

niAi
, (2.4)

where the integers mi, ni correspond to the respective magnetic and electric
charges; mi is the quantized flux and ni is the wrapping number of the
higher dimensional brane around the corresponding internal 2-cycle. For a
rectangular torus of radii R1 and R2 in the directions X1 and X2, the area

1The index i becomes identical to I above, when the 6d internal manifold is a product
of three factorized tori. In the general case, i denotes all possible two-cycles, even non-
factorizable.
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is A = R1R2. Open string propagation in magnetic fields has a T-dual
representation in terms of D-branes at angles. For instance, starting with a
Dp brane on a magnetized rectangular torus and applying a T-duality in the
direction X2, R2 → α′/R2, leads to a D(p− 1) brane wrapped on a direction
forming an angle θ relative to the X1 axis, given by the dual of the magnetic
field:

Hα′ → tan θ =
mR2

nR1
. (2.5)

Thus, the integers m and n in (2.4) become the wrapping numbers around
the X2 and X1 directions, respectively.

We consider now several abelian magnetic fields Ha
i of different Cartan

generators U(1)a, so that the gauge group is a product of unitary factors
∏

a U(Na) with U(Na) = SU(Na) × U(1)a. In an appropriate T-dual repre-
sentation, it amounts to consider several stacks of D6-branes intersecting in
the three internal tori at angles determined by the magnetic fields according
to (2.5). An open string with one end on the a-th stack has charge ±1 un-
der the U(1)a, depending on its orientation, and is neutral with respect to
all others. Using the results described above, the massless spectrum of the
theory falls into three sectors [17]:

1. Neutral open strings ending on the same stack, giving rise to N = 1
gauge supermultiplets of gauge bosons and gauginos.

2. Doubled charged open strings from a single stack, with charges ±2
under the corresponding U(1), giving rise to massless fermions trans-
forming in the antisymmetric or symmetric representation of the associ-
ated SU(N) factor. Their bosonic superpartners become massive. For
factorized toroidal compactifications (T 2)3, the multiplicities of chiral
fermions are given by:

Antisymmetric :
1

2

(

∏

I

2ma
I

)(

∏

J

na
J + 1

)

Symmetric :
1

2

(

∏

I

2ma
I

)(

∏

J

na
J − 1

)

(2.6)

where a denotes the D-brane stack, I is the label of the two-torus T 2
(I),

and ma
I , n

a
I are the integers entering in the expression of the magnetic

field (2.4). For orbifolds or more general Calabi-Yau spaces, the above
multiplicities may be further reduced by the corresponding supersym-
metry projection down to N = 1.
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In the degenerate case where a magnetic field vanishes, say, along one
of the tori (ma

I = 0 for some I), there are no chiral fermions in d = 4
dimensions, but the same formula with the products extending over
the other two magnetized tori gives the multiplicities of chiral fermions
in d = 6. In this case, chirality in four dimensions may arise only
when the last T 2 compactification is combined with some additional
orbifold-type projection.

3. Open strings stretched between two different brane stacks, with charges
±1 under each of the corresponding U(1)s. They give rise to chiral
fermions transforming in the bifundamental representation of the two
associated unitary group factors. Their multiplicities, for toroidal com-
pactifications, are given by:

(Na, Nb) :
∏

I

(ma
In

b
I + na

Im
b
I)

(Na, N b) :
∏

I

(ma
In

b
I − na

Im
b
I) . (2.7)

As in the previous case, when a factor in the products of the above
multiplicities vanishes, there are no 4d chiral fermions, but the same
formula with the product extending over the other two magnetized tori
gives the corresponding multiplicity of chiral fermions in d = 6.

As mentioned already above, all charged bosons are massive. Massless
scalars can appear only when some supersymmetry remains unbroken. In
case 2 of doubled charged strings from the same stack, the requirement of
massless scalars is equivalent to unbroken supersymmetry on the correspond-
ing brane stack. For toroidal compactifications, using the mass formula (2.3),
the condition for the a-th stack is

δHa ≡ ǫ1H
a
1 + ǫ2H

a
2 + ǫ3H

a
3 = 0 , (2.8)

where Ha
I is the magnetic field of U(1)a on the two-torus T 2

(I), and ǫI are

signs ± with one at least different from the others ((ǫ1, ǫ2, ǫ3) = (+,+,−) or
(+,−,+) or (−,+,+)). In case 3 of strings ending on two different sets of
branes, massless scalars arise when one has unbroken supersymmetry locally,
at the intersection. The generalization of the above condition is:

δHab ≡ δHa − δHb = 0 . (2.9)

In the T-dual representation, condition (2.9) involves the relative intersection
angles (θa

I − θb
I), defined as in eq. (2.5).
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It is now clear that the above framework leads to models with a tree-
level spectrum realizing the idea of split supersymmetry. Embedding the
Standard Model (SM) in an appropriate configuration of D-brane stacks, one
obtains tree-level massless gauginos while all scalar superpartners of quarks
and leptons typically get masses at the scale of the magnetic fields, whose
magnitude is set by the compactification scale of the corresponding internal
space.

On the other hand, the condition to obtain a (tree-level) massless Higgs
in the spectrum implies that supersymmetry remains unbroken in the Higgs
sector, leading to a pair of massless higgsinos, as required by anomaly can-
cellation. Note that since the Higgs doublet has the same quantum numbers
with leptons, it is likely that lepton doublets have the same open string origin
as the Higgs scalar, and thus, left-handed sleptons are also massless at the
tree-level.

3 Gauge coupling unification

On general grounds, there are two conditions to obtain unification of Stan-
dard Model gauge interactions, consistently with extrapolation of gauge cou-
plings from low-energy data using the minimal supersymmetric SM spectrum.
(i) Equality of the SU(3) color and weak SU(2) non-abelian gauge couplings
and (ii) the correct prediction for the weak mixing angle sin2 θW = 3/8 at
the grand unification (GUT) scale. On the other hand, a generic D-brane
model using several stacks, as described in the framework of the previous
section, does not satisfy either of the two conditions. Indeed, this framework
was developed in connection to the idea of low-scale strings [11, 12], where
the concept of unification is radically different from conventional GUTs. In
this section, we study precisely the general requirements for satisfying the
first of the above two conditions, namely natural unification of non-abelian
gauge couplings. The second condition is more involved and model depen-
dent, since it is related with the particular hypercharge embedding and will
be discussed in section 6.

The four-dimensional non-abelian gauge coupling αNa
of the a-th brane

stack is given by:

1

αNa

=
V a

gs

∏

I

|na
I |
√

1 + (Ha
I α

′)2 , (3.1)

where gs is the string coupling and V a the compactification volume in string
units of the internal space of the a-th brane stack. The presence of the wrap-
ping numbers |na

I | can be understood from the fact that |na
I |V a

I is the effective
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area of the 2-torus T 2
(I) wrapped na

I times by the brane, and V a =
∏

I V
a
I .

The additional factor in the square root follows from the non-linear Dirac-
Born-Infeld (DBI) action of the abelian gauge field,

√

det(δij + Fijα′), which

in the case of two dimensions with Fij = ǫijH , it is reduced to
√

1 + (Hα′)2.
Obviously, the expression (3.1) holds at the compactification scale, since
above it gauge couplings receive important corrections and become higher
dimensional. Finally, the gauge couplings of the associated abelian factors,
in our convention of U(1) charges, are given by

α
U(1)a

=
αNa

2Na
. (3.2)

Here, non-abelian generators are normalized according to TrT aT b = δab/2.
From equation (3.1), it follows that unification of non-abelian gauge cou-

plings holds if (i) V a and (ii)
∏

I |na
I | are independent of a, while (iii) the

magnetic fields are either a-independent as well, or they are much smaller
than the string scale.

• The first condition (i) is automatically satisfied for D9-branes, since
then V a = V , the total volume of the six dimensional internal manifold.

• The second condition (ii) is satisfied for a large class of models with
|na

I | = 1, which is the point particle field theoretic value of Dirac quan-
tization for magnetic fields (no multiple brane wrapping). Actually,
this value follows also from eq. (2.6), by requiring the absence of chiral
fermions transforming in the symmetric representations of the non-
abelian groups, i.e. no chiral SU(3) color sextets and no weak SU(2)
triplets.2

• The third condition (iii) of weak magnetic fields is more quantitative.
Allowing for 1% error in the unification condition at high scale, one
should have Ha

Iα
′ <∼ 0.1. From the quantization condition (2.4), this

implies that the volume V >∼ 103 for three magnetized tori, which is
rather high to keep the theory weakly coupled above the compactifica-
tion scale. Indeed, eq. (3.1) gives a string coupling gs of order O(10)
for gauge couplings αNa

≃ 1/25 at the unification scale. On the other
hand, for one or two magnetized tori one obtains V >∼ 10 − 102, which
is compatible with a string weak coupling regime (gs ∼ 0.1 − 1). Of
course this discussion should be taken with caution, because there is
an uncertainty in the relation of gs with the string loop expansion pa-
rameter. Here, we were conservative and defined it as in a 4d gauge

2The vanishing of the multiplicity (2.6) is also realized when some m
a

I
= 0, which is a

trivial solution since in this case the corresponding magnetic field vanishes.
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theory. In a 10d theory however, there may be additional powers of 2π
which would improve significantly perturbativity [18].

Actually, the condition of weak magnetic fields can be partly relaxed
in some direction, by requiring the absence of chiral antiquark doublets
in the spectrum. Indeed eq. (2.7), for open strings stretched between
the strong SU(3) and weak SU(2) interactions brane stacks, implies
the vanishing of one of the factors in the product. This leads to the
equality of the ratio ma

I/n
a
I for the two stacks and for some I, and thus,

to the equality of the two corresponding magnetic fields via eq. (2.4).3

As a result, the condition of perturbativity is weakened and becomes
possible even in the case of three factorized magnetized tori.

Note that in the T-dual representation of intersecting D6-branes, the
unification conditions discussed above appear less natural. In the expression
(3.1) of gauge couplings, the numerator (V a times the product) is replaced by
the volume of the 3-cycle around which the D6 brane wraps. For instance, in
the case of three factorized rectangular tori of radii RI

1 and RI
2 in string units,

it is given by
∏

I

√

(na
IR

I
1)

2 + (ma
IR

I
2)

2. The same unification conditions then
hold in this context, with the requirement of weak magnetic field replaced by
the requirement of small angle, which is equivalent to the inequality RI

2 <<
RI

1 (see eq. (2.5)).
The above analysis concerns mainly the QCD and SU(2)L gauge couplings

α3 and α2. The case of hypercharge is more subtle since it can be in general
a linear combination of several U(1)s coming from different brane stacks. In
section 6, for the purpose of illustration, we present an explicit example with
the correct prediction of the weak mixing angle. It is based on a minimal
Standard Model embedding in three brane stacks with the hypercharge being
a linear combination of two abelian factors. This provides an existence proof
that can be generalized in different constructions. We notice for instance
that in a class of supersymmetric models with four brane stacks, the equality
of the two non-abelian couplings α2 = α3 implies the value 3/8 for sin2 θW

at the unification scale [19].

4 Mass scales and supersymmetry breaking

The supersymmetry breaking scale mS on the brane stacks is given by the
lightest charged scalar masses (2.3), or equivalently by δHa =

∑

I ǫIH
a
I of

3This argument is true only when the U(1) accompanying the weak interactions brane
stack participates in the hypercharge combination. Otherwise, quark anti-doublets are
equivalent to quark doublets (see example in section 6).
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eq. (2.8), in the weak field limit. In the case of strong magnetic fields, of
order of the string scale, Ha

I should be replaced by the angles θa
I according to

eqs. (2.2) and (2.5). For magnetic fields in more than one internal planes, mS

can therefore be smaller than their magnitude, and consequently from the
corresponding compactification scales (2.4). Similarly, on brane intersections,
the supersymmetry breaking scale is given by the differences δHab of eq. (2.9),
and thus, can be again smaller than Ha

I and the compactification scales.
Let us now discuss the various mass scales. To preserve gauge cou-

pling unification, the (non-gravitational part of the) theory must remain
4-dimensional up to the unification scale. So the compactification scale (ac-
tually the smallest, if there are several) must be no smaller than the unifi-
cation energy, MGUT ≃ 1016 GeV, and we will take them to be of the same
order. Above the compactification scale, gauge interactions acquire a higher
dimensional behavior. So, to keep the theory weakly coupled, the string scale
Ms ≡ α′−1/2 should be close to the compactification scale and therefore to
MGUT. Moreover, as we discussed in the previous section, to ensure that
corrections to the unification of gauge couplings are within 1%, the magnetic
fields should be weak. It follows that the string scale should be roughly a
factor of 3 higher than the compactification scale,

Ms
>∼ 3MGUT . (4.1)

On the other hand, as we pointed out above, mS can be lower than MGUT.
Although much lower values require an apparent fine tuning of radii, such
a tuning is technically natural since the supersymmetric point mS = 0 is
radiatively stable. One can therefore treat mS ∼ |δH|1/2 as free parameter
and drop for simplicity the brane stacks dependent index in δH .

All scalar masses are of order |δH|1/2 except for those coming from su-
persymmetric sectors, which are vanishing to lowest order, such as the Higgs
and possibly the slepton doublets. The latter are expected to acquire masses
from one loop corrections, proportional to |δH|1/2 but suppressed by a loop
factor. Note that off diagonal elements of the 2×2 Higgs mass matrix, usually
denoted by Bµ, should also be generated at the same order as the diagonal
elements, in the absence of a Peccei-Quinn (PQ) symmetry. For high δH , a
fine tuning between Bµ and the diagonal elements is then required to ensure
a light higgs.

It remains to discuss the corrections to gaugino and higgsino masses,
m1/2 and µ, which are vanishing at the tree-level. In the absence of gravity,
they are both protected by an R-symmetry. Actually, higgsino masses are
protected in addition by a PQ symmetry which must be broken in order to
generate a Bµ mixing term in the Higgs mass matrix, as we argued above.
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Then, a µ-term can be generated via Bµ, or directly using the PQ symmetry
breaking, if R-symmetry is broken. Indeed, R-symmetry is in general bro-
ken in the gravitational sector by the gravitino mass m3/2 and thus, in the
presence of gravity, m1/2 and µ are not anymore protected.

Thus, the study of fermion masses requires some knowledge of supersym-
metry breaking in the gravity sector, which has been ignored up to now. A
related issue is the cancellation of the cosmological constant between brane
and bulk contributions, in order to maintain the flat space background. The
brane contribution comes from the supersymmetry breaking due to the mag-
netic field and scales as (δH)p, in string units, where the power p depends
on the number N of bulk supersymmetries broken by δH . For the maximal
value of N = 4 it was found that p = 3 [14], while for N = 1 we expect that
p = 1, or more precisely (δH)H from the form of the DBI action (3.1).

The vanishing of the vacuum energy implies that an additional source of
supersymmetry breaking should probably be introduced in the closed string
sector (bulk). The corresponding dominant bulk contribution to the cosmo-
logical constant is proportional in general to m2

3/2Λ
2, with Λ the ultraviolet

(UV) cutoff. Combining the brane and bulk contributions, one obtains

m3/2 ∼
|H|1/2

Λ
× |δH|1/2 . (4.2)

Thus, for Λ ≃ Ms the gravitino mass is in general of the same order as the
scalar masses, while for Λ ≃MP , the 4d Planck mass, it is about three orders
of magnitude lower.

In the following, we will consider for concreteness a source of bulk su-
persymmetry breaking via Scherk-Schwarz (SS) [20] boundary conditions
along a “gravitational” interval S1/Z2 of length πR [21]. This interval can
be identified either with the eleventh dimension of M-theory [22], or with
some internal orientifold direction of type I string theory, transverse to all
“observable” brane stacks where the Standard Model is localized [23]. The
gravitino mass is then given by:

m3/2 =
ω

R
, (4.3)

where ω ∈ [0, 1] is the parameter of the SS deformation. It originates from
the boundary conditions of the five dimensional fields which are periodic up
to a phase of a symmetry transformation [20]. The latter can be parametrized
as e2iπω/R and corresponds to a discrete rotation in the internal compactified
space, in order to give a mass to the gravitino. Therefore, ω is quantized and
equals 1/N for ZN .
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Using now the usual relations that express the 4d Planck massMP and the
gauge coupling at the unification scale αG in terms of the string parameters
(scale, coupling and compactification sizes), one finds upon eliminating the
string coupling [21, 12]:

R−1 =
2

α2
G

M3
s

M2
P

V −1 , (4.4)

where V is the internal compactification volume (in string units) of all SM
branes. Substituting the values discussed above for Ms and V , one finds
R−1 ≃ O(1013 − 1014) GeV. Following our previous discussion on the cancel-
lation of vacuum energy, when combining the SS bulk supersymmetry break-
ing with the brane magnetic fields, one expects that |δH|1/2 should also be
of the same order 1013 GeV. On the other hand, because of the uncertainty
in the value of the relevant UV cutoff in eq. (4.2), the scalar masses could
be either significantly higher, of order of the unification scale, or lower, of
order of 1010 GeV for Λ ≃ R−1 ≃ m3/2, as was argued in the context of SS
compactifications [24]. Thus, in section 7, we will study the phenomenology
of the whole range of scalar masses mS ≃ 1010 − 1016 GeV.

5 Light gaugino masses

In the presence of R-symmetry, gluinos can only get a Dirac mass by pairing
up with other color octet fermions, which spoils gauge coupling unification.
So, gluinos must either be massless, which is phenomenologically strongly
disfavored, or get an R-breaking Majorana mass. The latter requires a source
for R-breaking, and would also permit, in combination with PQ breaking, the
generation of higgsino masses.

One possible source of R-symmetry breaking is the Majorana mass for the
gravitino. Such a mass is always present, as a result of canceling the tree-
level cosmological constant, in theories where there is an energy regime in
which 4d supergravity holds. A second possibility is that there is no such an
energy regime, the gravitino gets an R-preserving Dirac mass by pairing up
with another spin-3/2 fermion, and R-symmetry is broken spontaneously by
a dynamical condensate. In this section, we will consider both possibilities,
beginning with the first.

The first possibility has already been studied in some detail in the effective
field theory [25, 7, 10]. Once R-symmetry, as well as supersymmetry, is
broken through the Majorana gravitino mass, the gauginos can get a mass in
a number of ways. One is anomaly mediation [26], whose leading contribution
can be adequately suppressed to allow for light gauginos in the presence of
heavy gravitinos [25, 10].
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In string theory, gaugino masses mediated from closed string radiative
corrections have been studied recently and shown to be generated at lowest
order by string diagrams of “one and a half” loop (“genus” 3/2) [27]. They
contain for instance one handle and one boundary. It turns out that for
generic compactifications and supersymmetry breaking mechanism, the re-
sulting gaugino masses are proportional to the gravitino mass for small m3/2

compared to the string scale: m1/2 ∼ α2m3/2 with α the corresponding gauge
coupling. Apart from the power of gauge coupling, this result is similar to
the contribution of anomaly mediation [28].

Suppression of the anomaly mediation contribution in radiative correc-
tions may arise as follows. A generic contribution to the gaugino mass in-
volves gravity and gauge loops and should contain a gravitino mass insertion
that brings one power of m3/2. From an effective field theory analysis, one
expects that the dominant contribution of each gravity loop is proportional
to Λ2/M2

P , with Λ the UV cutoff, since each gravitational vertex brings an
inverse power of Planck mass MP and the loop is quadratically divergent.
Moreover, gauge loops do not modify this power counting. If the UV cutoff
is set up by the Planck scale, m1/2 would be proportional to m3/2. However,
in special models with supersymmetry breaking via Scherk-Schwarz com-
pactifications, one expects a UV cutoff set by the compactification scale [24],
in which case the dominant contribution comes from one gravitational loop,
leading to m1/2 ∝ m3

3/2/M
2
P [25, 7]. Thus, gauginos (and higgsinos) become

light around the TeV scale, for instance when m3/2 ∼ |δH|1/2 ≃ 1013−14 GeV
as we argued above.

On the other hand, in the string theory analysis, it was found that for orb-
ifold compactifications the corrections to m1/2 are exponentially suppressed
for small gravitino mass at the lowest non-trivial order of “genus” 3/2 [27].
This is an indication that these models are indeed examples of quantum grav-
itational suppressed anomaly mediation, which may be checked by going to
the next non-trivial order.

We now present a different mechanism to protect gaugino masses in the
presence of gravity, based on symmetry. It involves theories in which there is
no 4d supergravity energy regime, the gravitino gets an R-preserving Dirac
mass by pairing up with another spin-3/2 fermion, and therefore does not
feed a mass to the gluino. The breaking of R-symmetry, which is necessary
to give masses to the gluinos and higgsinos, can subsequently occur via a
dynamical condensate.

We begin from the observation that the lowest order perturbative cor-
rection to m1/2 is exactly vanishing for the case of Z2 SS deformation with
ω = 1/2 (see eq. (4.3)) [29, 27]. Indeed, here we will argue that the usual SS
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compactification with a Z2 shift in a direction transverse to the brane leaves
unbroken a generalized R-type symmetry, which guarantees the vanishing of
gaugino masses in the full theory. We will use the effective field theory de-
scription of the whole tower of Kaluza-Klein (KK) excitations for a generic
SS compactification on a circle of radius R [30]. A massless five-dimensional
(5d) spinor ψ, with SS boundary conditions twisted by the phase e2iπω/R

around the circle, gives rise in four dimensions to the following 2 × 2 mass
matrix for each pair of KK levels |n > and | − n > :

1

R

(

ψL
n ψR

n

)

(

ω n
n ω

)(

ψL
n

ψR
n

)

; n = 0, 1, 2 . . . , (5.1)

where ψL,R
n is the left (L) and right (R) component of the n-th KK excitation

of the fermion. The diagonal element ω arises from the SS deformation. The
eigenvalues of the above mass matrix are (ω±n)/R, reproducing the familiar
shift of the KK number.

Here, we consider a SS direction which is transverse to the brane stack, so
that gauginos are not affected and supersymmetry remains unbroken on the
branes in the presence of the SS deformation. The only source of supersym-
metry breaking on the branes comes from the magnetic fields on their world
volume, which give masses to all charged scalars, as we described previously.
Thus, in this case, the SS direction is not a circle but an interval S1/Z2,
with Z2 being the inversion of the extra coordinate. Its action on the KK
spectrum consists of sending |n >→ |− n >, while at the same time acts on
4d fermion chiralities: left-hand components are invariant and right-handed
change sign. As a result, the Z2 projection on the KK spectrum of a 5d spinor
keeps the left-handed symmetric and right-handed antisymmetric combina-
tions of states (|n >

L
+| − n >

L
)/
√

2 and (|n >
R
−| − n >

R
)/
√

2, having
cosine and sine wave functions, respectively. Keeping the same notation ψL

n

and ψR
n for these Z2 invariant combinations, the fermion mass terms can be

easily deduced from the expression (5.1) and take the form:

ω

R
ψL

0 ψ
L
0 +

1

R

∑

n≥1

(

ψL
n ψR

n

)

(

ω n
n ω

)(

ψL
n

ψR
n

)

. (5.2)

For a generic SS deformation, corresponding for instance to a ZN shift
with ω = 1/N and N > 2, a simple inspection of eq. (5.2) shows that
there is a tower of Majorana masses for the gravitino KK modes, that break
the R-symmetry of global supersymmetry. Thus, gauginos are expected to
acquire masses through gravitational radiative corrections. Moreover, despite
the quantization of ω, one can define three energy regimes in the gravity
sector. A low-energy 4d non-supersymmetric region below the lightest KK
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gravitino mass ω/R, a 5d supergravity region at energies higher than the
compactification scale E >> 1/R, and an intermediate regime at energies
ω/R < E < 1/R, where one can define a 4d N = 1 spontaneously broken
supergravity. The latter can be obtained by integrating out all heavier KK
excitations with n > 1 and describes the physics of the gravitino “zero mode”
n = 0.

This general picture breaks down in the Z2 case ω = 1/2, due to a new
pairing that arises in the KK spectrum. The “zero mode” becomes degener-
ate with the lightest eigenstate of the 2 × 2 mixing matrix for the first KK
excitation n = 1, with mass eigenvalue 1/2R. This degeneracy continues
similarly to all KK levels; the heaviest eigenstate at level n with mass eigen-
value (n + 1/2)/R, becomes degenerate with the lightest eigenstate at level
n + 1. Thus, all masses can be rewritten in a Dirac type form and one can
define a new unbroken R-symmetry that keeps gauginos on the transverse
branes massless. Note also that in this case, there is no intermediate energy
regime where one can define a 4d N = 1 supergravity, since after the SS
deformation, the 4d gravitino zero mode is degenerate with another state
coming from its n = 1 KK excitation. Including this extra spin-3/2 state in
the effective theory, one should also include its degenerate n = 1 companion
at the symmetric phase, which however, after the SS deformation, becomes
degenerate with the lightest eigenstate from the next level n = 2, and so
on. In the effective supergravity, one should therefore include the whole KK
tower and the intermediate energy regime is lost.

The low-energy 4d non-supersymmetric region without any gravitino mode
has obviously a chiral symmetry associated to the massless gauginos. On the
other hand, in order to describe the generalized R-symmetry in the pres-
ence of gravity, one has to go directly to the high energy 5d regime with the
whole KK gravitino tower. This phenomenon provides the first example of
massive supergravity coupled to an exact supersymmetric gauge sector (but
non-supersymmetric chiral matter) that survives in the quantum theory. As
we mentioned earlier, the R-symmetry can be broken spontaneously by ap-
propriate dynamics within the effective field theory at much lower energies
and generate gaugino and higgsino masses close to the electroweak scale, pre-
serving the unification of gauge couplings. In this case, the corresponding
breaking scale is an extra parameter that requires separate dynamics.

6 Model building

In this section, we present an explicit Standard Model embedding, in a min-
imal set of three brane stacks which has a realistic particle content, satisfies
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the conditions of unification of strong and weak interactions and predicts the
correct weak angle sin2 θW = 3/8 at the unification scale. This model illus-
trates our general framework and provides an explicit example where several
problems can be addressed and many general phenomenological consequences
can be discussed.

Model building with intersecting branes has been extensively studied in
the recent literature, mainly in the context of low-scale string models [11, 12]
(see for example ref. [13] and references therein). According to the gen-
eral analysis of ref. [31], the SM embedding requires usually four stacks of
branes, the color U(3), the weak U(2), together with two abelian ones. The
hypercharge is in general a linear combination of the four U(1)s, while the
remaining three orthogonal combinations are usually broken by anomalies to
their global counterparts corresponding to the baryon and lepton numbers
and a Peccei-Quinn symmetry. Moreover, the value of the weak angle when
α3 = α2 is in general different from 3/8, which in any case is not a desired
value when the string scale is at low energies. Here, we will focus on a partic-
ular model that was dropped from the analysis of refs. [31] because, although
minimal and very economic, it was not appropriate for low string scale. Its
two main defects were the value of the weak angle and the absence of baryon
number as a symmetry to guarantee proton stability.

The model requires three stacks of branes giving rise to U(3)×U(2)×U(1)
gauge group. For completeness, below we will make a general study of SM
embedding in three brane stacks [32]. The quark and lepton doublets (Q
and L) correspond to open strings stretched between the weak and the color
or U(1) branes, respectively. On the other hand, the uc and dc antiquarks
can come from strings that are either stretched between the color and U(1)
branes, or that have both ends on the color branes and transform in the
antisymmetric representation of U(3) (which is an anti-triplet). There are
therefore three possible models, depending on whether it is the uc (model A),
or the dc (model B), or none of them (model C), the state coming from the
antisymmetric representation of color branes. It follows that the antilepton
lc comes in a similar way from open strings with both ends either on the
weak brane stack and transforming in the antisymmetric representation of
U(2) which is an SU(2) singlet (in model A), or on the abelian brane and
transforming in the “symmetric” representation of U(1) (in models B and
C). The three models are presented pictorially in Figure 1.

Thus, the members of a family of quarks and leptons have the following
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Figure 1: Pictorial representation of models A, B and C.

quantum numbers:

Model A Model B Model C

Q (3, 2; 1, 1, 0)1/6 (3, 2; 1, εQ, 0)1/6 (3, 2; 1, εQ, 0)1/6

uc (3̄, 1; 2, 0, 0)−2/3 (3̄, 1;−1, 0, 1)−2/3 (3̄, 1;−1, 0, 1)−2/3

dc (3̄, 1;−1, 0, εd)1/3 (3̄, 1; 2, 0, 0)1/3 (3̄, 1;−1, 0,−1)1/3 (6.1)

L (1, 2; 0,−1, εL)−1/2 (1, 2; 0, εL, 1)−1/2 (1, 2; 0, εL, 1)−1/2

lc (1, 1; 0, 2, 0)1 (1, 1; 0, 0,−2)1 (1, 1; 0, 0,−2)1

νc (1, 1; 0, 0, 2εν)0 (1, 1; 0, 2εν, 0)0 (1, 1; 0, 2εν, 0)0

where the last three digits after the semi-column in the brackets are the
charges under the three abelian factors U(1)3×U(1)2×U(1), that we will call
Q3, Q2 and Q1 in the following, while the subscripts denote the corresponding
hypercharges. The various sign ambiguities εi = ±1 are due to the fact that
the corresponding abelian factor does not participate in the hypercharge
combination (see below). In the last line, we also give the quantum numbers
of a possible right-handed neutrino in each of the three models. These are in
fact all possible ways of embedding the SM spectrum in three sets of branes.

The value of the weak angle can be easily computed from the hypercharge
combination:

Y =
∑

i

ciQi ⇒ sin2 θW =
1

1 + 4c22 + 2c21α2/α1 + 6c23α2/α3
, (6.2)

where αi are the non-abelian couplings and the numerical coefficients are due
to our normalization of U(1) charges according to eq. (3.2). In our models,
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the hypercharge combination is:

Model A : Y = −1

3
Q3 +

1

2
Q2 (6.3)

Model B,C : Y =
1

6
Q3 −

1

2
Q1

leading to the following expressions for the weak angle:

Model A : sin2 θW =
1

2 + 2α2/3α3

=
3

8

∣

∣

∣

∣

α2=α3

(6.4)

Model B,C : sin2 θW =
1

1 + α2/2α1 + α2/6α3
=

6

7 + 3α2/α1

∣

∣

∣

∣

α2=α3

In the second part of the above equalities, we used the unification relation
α2 = α3, that can be naturally imposed as described in section 3. Indeed,
it follows by requiring the absence of chiral fermions that transform in the
symmetric representation of SU(3) and SU(2) and the magnetic fields to be
roughly an order of magnitude smaller than the string scale. The last con-
dition can be partly relaxed in model A from the requirement of absence of
chiral quark “anti”-doublets in the spectrum. Notice that such states have
wrong hypercharge, since their Q2 charge is opposite from quark doublets in
eq. (6.3). This cannot be used in models B and C because Q2 does not partic-
ipate in the hypercharge combination, and thus, doublets and anti-doublets
are indistinguishable. In any case, in these models the unification of the two
non-abelian couplings is not sufficient to predict the weak angle and further
conditions are needed for the U(1) coupling α1. Such an analysis goes be-
yond the scope of this paper, which is to describe the general framework and
present a simple example. Indeed, model A admits natural gauge coupling
unification of strong and weak interactions, realizing the conditions we de-
scribed in section 3, and predicts the correct value for sin2 θW = 3/8 at the
unification scale MGUT.

The spectrum (6.1) can be easily implemented with a Higgs sector, since
the Higgs field H has the same quantum numbers as the lepton doublet or
its complex conjugate:

Model A Model B,C

H (1, 2; 0,−1, εH)−1/2 (1, 2; 0, εH, 1)−1/2 (6.5)

H ′ (1, 2; 0, 1, εH′)1/2 (1, 2; 0, εH′,−1)1/2

Actually, as explained in the general framework of section 2, the Higgs sector
should be locally supersymmetric, so that the Higgs scalars are massless at
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the tree level, and thus H and H ′ correspond to two Higgs chiral supermul-
tiplets.

Besides the hypercharge combination, there are two additional U(1)s. It
is easy to check that one of the two can be identified with B−L. For instance,
in model A choosing the signs εd = εL = −εν = −εH = εH′, it is given by:

B − L = −1

6
Q3 +

1

2
Q2 −

εd

2
Q1 . (6.6)

The other U(1) corresponds to a Peccei-Quinn (PQ) type symmetry. B − L
can be broken by a vacuum expectation value (VEV) of a SM singlet field of
the type of νc, at a high scale. In any case, this model has no baryon number
conservation and thus proton is unstable by dimension six effective operators
suppressed by the string scale.

The second U(1) combination of PQ type is anomalous. The correspond-
ing gauge field should become massive via the Green-Schwarz mechanism, by
absorbing an axion from the Ramond-Ramond (RR) closed string sector [33].
Usually, its global counterpart survives and remains unbroken in perturba-
tion theory at the orbifold point [34]. To avoid the presence of an electroweak
axion, one should either move away from this point, or find some appropri-
ate extension of the model which allows to break PQ by a scalar VEV at
a high scale. On the other hand, in the presence of magnetic fields, it was
noticed that the RR axions involved in the anomaly cancellation come from
the untwisted orbifold sector [15]. In this case, the global symmetry will be
in general broken at the scale of the anomalous U(1) mass, as in heterotic
string models. As a result, the axion becomes invisible and no PQ symmetry
should survive at low energies.

7 Constraints from Gluino Cosmology

The most distinctive signature of split SUSY, decisively differentiating it from
the usual supersymmetric SM, is the long-lived gluino, which is the smoking
gun of this framework. Because the scale of supersymmetry breaking is high,
the squarks are heavy and the lifetime for the gluino to decay into a quark,
antiquark and LSP – which is mediated by virtual squark exchange – is:

τ = 3 × 10−2sec
( mS

109 GeV

)4(1 TeV

mg̃

)5

, (7.1)

where mS is the squark mass and mg̃ the gluino mass. We have included a
QCD enhancement factor of ∼ 10 in the rate, and another factor ∼ 10 for
the number of decay channels. The longevity of the gluino can lead to a host
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of interesting signatures at the LHC such as displaced vertices, intermittent
tracks, late decaying gluinos captured near the detector etc., which have
been discussed in refs. [7, 8, 9, 10]. These signatures depend on the lifetime,
which in turn depends sensitively, through the above equation, on the gluino
mass and the squark mass mS ∼

√
δH. These quantities are constrained by

cosmological considerations, to which we turn next.
The most natural value for the squark mass, one that does not require

tuning the ratio δH/H to be small, is mS ∼
√
δH ∼MGUT ∼ 1016 GeV. For

this value of mS, and for mg̃ ∼ 1 TeV, the gluino lifetime is of order 3× 1026

sec, much longer than the age of the universe. Such cosmologically stable
gluinos are expected to assemble into color singlet “R-hadrons” by combining
with gluons, quarks and antiquarks during the QCD phase transition. Sub-
sequently, during the primordial big bang nucleosynthesis, the R-hadrons
are expected to assemble, often together with ordinary nucleons, into nuclei,
which will eventually form atoms. These atoms will be chemically similar to
a familiar atom, but will instead have a heavy ∼ TeV mass nucleus. Searches
for such anomalous heavy isotopes are very restrictive. The limits on heavy
hydrogen isotopes in the mass range up to ∼ 1 TeV is one such atom in 1027

nucleons, and for isotopes in the mass range from 1 TeV to 10 TeV is 1022 per
nucleon [35]. The upper limits for heavy (up to 10 TeV) isotopes of Helium,
Carbon and Oxygen nuclei are as small as one atom in ∼ 1017 nucleons.

These suggest similar limits to the abundances of gluinos relative to or-
dinary matter, since most gluinos and R-hadrons are expected to end-up in
nuclei. Although one cannot prove that this is inescapable, it is hard to imag-
ine that none of the many possible ways in which R-hadrons and ordinary
hadrons can combine with nucleons into some low-Z nuclei is realized. More
precisely, there is a multitude of ways in multi-quark states can combine with
a gluino into a color-singlet state of charge 0,1, 2, 6 or 8, and it is unlikely
that none of these bound states form. So the abundance of gluinos relative to
ordinary matter should probably be as small as 10−27 per nucleon, or 10−37

per photon, to account for the absence of heavy hydrogen isotopes of mass
up to 1 TeV, or less than 10−32 per photon, if the gluino weighs up to 10
TeV. The absence of heavy, up to 10 TeV, isotopes of Helium, Carbon and
Oxygen gives an upper limit of about not bigger than 10−17 per nucleon, or
about 10−27 per photon. We now estimate the cosmological abundance of
gluinos relative to photons before they have a chance to decay.

Before decaying, the gluinos can only reduce their number density by
annihilating with each other. They can do so as either bare gluinos, before
the QCD phase transition, or as gluinos clothed into R-hadrons, after the
QCD phase transition. The cross section for bare gluinos is perturbative and
scales as ∼ m−2

g̃ . The cross section for two R-hadrons to annihilate in the
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early universe is more subtle, and is still an open question; in part because
even if the two R-hadrons combine into an “R-molecule” bound state, this
can be dissociated by collisions with the medium before the gluinos in the
molecule have a chance to annihilate each other. Making, nevertheless, the
plausible hypothesis that the cross section for two R-hadron annihilation
scales as the square of the QCD size, of order σ ∼ 30 mb, results in a
gluino abundance which we estimate by equating expansion and reaction
rates, nσ v ∼ T 2/MP l with T ∼ ΛQCD. This translates to

ng̃

nγ
= 10−18

( mg̃

1 TeV

)1/2

. (7.2)

This is larger than the the maximal allowed abundance of 10−27 relative to
photons from the absence of anomalous heavy isotopes, and much larger than
the upper limit of 10−37 (10−32) per photon from the absence of anomalous
isotopes of heavy hydrogen of mass up to 1 TeV (10 TeV). Though the esti-
mate of the R-hadron annihilation cross section is uncertain, the discrepancy
is so large that we can exclude the possibility of stable gluinos with some
confidence.

Some remaining loopholes are: 1) The reheat temperature of the universe
after inflation is so low that no gluinos are made. 2) Gluinos do not form
any heavy nuclei, which, as mentioned before, we find implausible. 3) The
simplest loophole: the gluino is in fact not cosmologically stable, and lives
much less than the age of the universe. This can be accomplished most
simply by a combination of a heavier gluino and lighter mS. For example,
if mS ∼

√
δH ≤ 1015 GeV and the gluino mass is more than about 10 TeV,

the lifetime drops to ∼ 1016 years or less, which is acceptable because most
gluinos will have decayed by now and will not be around to form heavy
isotopes. Note that this requires some fine-tuning to make the ratio δH/H
small. This tuning though is radiatively stable as was already pointed out
in section 4, since it is protected by supersymmetry, which is broken by δH
but not H . Note however that for gluino masses much heavier than ∼ 10
TeV, the successful gauge coupling unification will be distorted. In addition,
such heavy gluinos will not be accessible to the LHC. A phenomenologically
more appealing case is that of a TeV-mass gluino and mS ∼

√
δH ≤ 3×1013

GeV. This requires more of a tuning, which as before is radiatively stable,
and maintains both unification and accessibility of gluinos at the LHC.

Gluinos, such as those just discussed, can also be cosmologically danger-
ous if their lifetime is shorter than the age of the universe but longer than a
second, and their abundance is not adequately small. This is because their
decay products can distort the photon background or destroy nuclei synthe-
sized during primordial nucleosynthesis, which began when the universe was
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one second old. A gluino that decays in less than a second is harmless, as its
decay products thermalize and the heat bath erases any trace of its existence.
Gluinos that live longer than a second can be safe, as long as their abundance
is small. This is easily satisfied as long as the R-hadrons annihilate with a
QCD-size cross section of order of 30 mb. The relevant quantity then, more
important that the plain abundance, is:

mg̃
ng̃

nγ
= 10−15

( mg̃

1 TeV

)3/2

GeV . (7.3)

It measures the destructive power of the decaying gluino gas, as it depends
on both the mass and the concentration of gluinos. The abundance of gluinos
with lifetime up to 1013 sec must be small to avoid spectral distortions of the
CMBR [36]. This constraint is mild, and equation (7.3) easily satisfies it. The
abundance of gluinos with lifetime in the range from 10−1 sec to 1012 sec must
also be small to avoid the destruction of the light nuclei synthesized during
the BBN [37, 38]. Although this constraint is strong, especially for lifetimes
between 104 sec to 107 sec, equation (7.3) satisfies it. Other constraints from
possible distortions of the diffuse photon background are also easily satisfied.

In summary, as long as its lifetime is much shorter than the age of the uni-
verse, and the R-hadrons annihilate with QCD-size cross sections ∼ 30 mb,
the gluino is cosmologically safe, and does not distort either photon back-
grounds or nuclear abundances. For a TeV mass gluino this entails a ≤ 10−3

fine-tuning that makes δH smaller than H , and is protected by supersym-
metry. Heavier gluinos require less tuning, at the expense of distorting the
successful unification and losing the gluinos at the LHC.

What if the R-hadrons do not annihilate with QCD-size cross sections,
and the only mechanism for the disappearance of gluinos before they decay
is standard perturbative annihilation? Then to avoid distorting the photon
spectrum or the nuclear abundances via the gluino decay products, its lifetime
must be less than a second, which implies a squark massmS ∼

√
δH <∼ 3×109

GeV, for a gluino mass of a TeV. Again, such a small δH will require a tuning
which is stable and protected by supersymmetry.
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